Week 3 - Monday

COMP 3400



= What did we talk about last time?
= Kernel

= System calls

= Process lifecycle



Questions?




Assignment 2




Project 1




Process Life Cycle




Processes are, of course, created when you run a program from
the command line

However, you can also create processes from within a program,
using calls to special functions

The fork () function creates a new processes that's exactly the
same as the current process

The exec () function allows you to replace the current process
with another program

Each process has a unique ID, its process ID or PID

= getpid () returns the PID of the current process
= getppid () returnsthe PID of the current process's parent process



The fork () function is pretty crazy!

= When you call it, the process you're inside of keeps running

= And another process spawns at exactly the same pointin code
= Both processes have exactly the same memory layout

= The only difference is that fork () returns the child PID for the original process and o if
you're the process that just got forked

pid t child pid = fork ();

if (child pid < 0)
printf ("ERROR: No child process created\n");
else if (child pid == 0)
printf ("Hi, I'm the child'\n");
else
printf ("Parent just gave birth to child %d\n", child pid);




Fork bombing

= If you call fork () inaloop, you will quickly create too many
processes and slow/crash your computer

= Each fork () creates a new process, but the old process keeps
running

= The following code will have four prints:

pid t first fork = fork ();

// Original parent and child create new processes
pid t second fork = fork ();

// This line prints four times
printf ("Hello from %d'\n", getpid ());




= Sometimes it's useful to fork a clone of yourself

= Other times, you want to run another program

= In those situations, you first fork yourself and then have your
child call something from the exec () family of functions:

execl (char *path, char *arg0, ..., NULL) Executes the program with the given path

execle (char *path, char *arg0, ..., NULL, char* envp[]) Egﬁgt;tlsz the program with the given path and environment
execlp (char *file, char *arg0, ..., NULL) Executes the program by looking it up in the current PATH
execv (char *path, char *argv[]) Like execl () but command-line arguments are in an array
execve (char *path, char *argv[], char *envp[]) Like execle () but command-line arguments are in an array
execvp (char *file, char *argv[]) Like execlp () but command-line arguments are in an array

fexecve (int fd, char *argv[], char *envp[]) Executes the program stored in the file descriptor £d



Example with exec ()

The following programs runs 1s, listing the contents of the
current directory:

pid t child pid = fork ()
if (child pid < 0)
exit (l1); // exit if fork () failed

if (child pid == 0) // child process
{
int rc = execlp ("1s", "l1ls", "-1", NULL),;
exit (l); // only reached if exec() failed
}




= Forking the current process and then executing a new process is the traditional approach
= Butthere are annoyances:

= |t's two different calls

= The original process memory is copied over, even though you're just going to throw it out
immediately with an exec ()

= It's not always clear what happens to the threads associated with the original process

= To simplify matters, there are posix_spawn () and posix_spawnp () (the same, but
with filename Iookup in PATH) functions that execute a new process all in one go

= Of course, it has more complicated arguments to make up for being simpler

pid t child = -1;

char *path = "ls";

char *argv|[] = { "1ls", "-1", NULL };

posix spawnp (&child, path, NULL, NULL, argv, NULL);




= Once you've forked or spawned a process, it will be scheduled to
run

= There are no guarantees about when a parent or a child will be
scheduled relative to each other

= It can be useful for a parent process to wait until its child processes
have terminated

= There are two functions for this:

= wait(int *stat loc)
Waits for all children

= waitpid(pid t pid, int *stat loc, int options)
Waits only on child process with PID



Example with wait ()

Here's the 1s example from earlier, except that the parent process waits
for 1s to finish

More code isn't shown, but the parent could continue doing other things

pid t child pid = fork ();
if (child pid < 0)
exit (1); // exit if fork() failed

if (child pid == 0) // child process
{
int rc = execlp ("1s", "1ls", "-1", NULL) ;

exit (1); // only reached if exec() failed
}

wait (NULL); // waits for 1ls to finish




= Read in tokens

= The first token is the program you want to run
= Each token after a space is an argument
= When you reach a newline, that's the whole command

= To keep it simple, we'll support only commands with up to 10
tokens, each of which is 10 or fewer characters long

= After reading in the tokens, we wait for the child process to
finish

= Repeat until the usertypesinexit






= Although physical memory is shared between processes, the

virtual memory system means that processes don't share
memory directly

= Other things must be shared by processes:
= Network cards

= Hard drives and SSDs
= User input and output devices

= A uniform way to work with most shared resources is to treat
them all like files

= This file abstraction makes many libraries similar and simpler




= The UNIX file abstraction uses two key ideas:
= Afileis a sequence of bytes

= Everythingis afile
= This abstraction is different from the traditional idea of files in a

few ways:
= Moving backwards and forwards within a file isn't always possible
= Files don't always have names or live in a particular place

= Files don't always have a set structure
= Even so, creating, deleting, opening, closing, reading, and writing

can be treated the same



Upcoming




= Finish files
= Events and signals



= Work on Assignment 2

= Due Friday by midnight
= Start working on Project 1
= Read sections 2.6 and 2.7



	COMP 3400
	Last time
	Questions?
	Assignment 2
	Project 1
	Process Life Cycle
	Creating processes in code
	Using fork()
	Fork bombing
	Running another program
	Example with exec()
	What if you don't want to fork() and exec()?
	Waiting for a child to finish
	Example with wait()
	Write a shell
	Files
	Sharing resources
	UNIX file abstraction
	Upcoming
	Next time…
	Reminders

