
Week 3 - Monday



 What did we talk about last time?
 Kernel
 System calls
 Process lifecycle











 Processes are, of course, created when you run a program from 
the command line

 However, you can also create processes from within a program, 
using calls to special functions

 The fork() function creates a new processes that's exactly the 
same as the current process

 The exec() function allows you to replace the current process 
with another program

 Each process has a unique ID, its process ID or PID
 getpid() returns the PID of the current process
 getppid() returns the PID of the current process's parent process



 The fork() function is pretty crazy!
 When you call it, the process you're inside of keeps running
 And another process spawns at exactly the same point in code
 Both processes have exactly the same memory layout
 The only difference is that fork() returns the child PID for the original process and 0 if 

you're the process that just got forked

pid_t child_pid = fork ();

if (child_pid < 0)
printf ("ERROR: No child process created\n");

else if (child_pid == 0)
printf ("Hi, I'm the child!\n");

else
printf ("Parent just gave birth to child %d\n", child_pid);



 If you call fork() in a loop, you will quickly create too many 
processes and slow/crash your computer

 Each fork() creates a new process, but the old process keeps 
running

 The following code will have four prints:

pid_t first_fork = fork ();

// Original parent and child create new processes
pid_t second_fork = fork ();

// This line prints four times
printf ("Hello from %d!\n", getpid ());



 Sometimes it's useful to fork a clone of yourself
 Other times, you want to run another program
 In those situations, you first fork yourself and then have your 

child call something from the exec() family of functions:
Function Description

execl(char *path, char *arg0, ..., NULL) Executes the program with the given path

execle(char *path, char *arg0, ..., NULL, char* envp[]) Executes the program with the given path and environment 
variables

execlp(char *file, char *arg0, ..., NULL) Executes the program by looking it up in the current PATH

execv(char *path, char *argv[]) Like execl() but command-line arguments are in an array

execve(char *path, char *argv[], char *envp[]) Like execle() but command-line arguments are in an array

execvp(char *file, char *argv[]) Like execlp() but command-line arguments are in an array

fexecve(int fd, char *argv[], char *envp[]) Executes the program stored in the file descriptor fd



 The following programs runs ls, listing the contents of the 
current directory:

pid_t child_pid = fork ();
if (child_pid < 0)
exit (1); // exit if fork() failed

if (child_pid == 0) // child process
{
int rc = execlp ("ls", "ls", "-l", NULL);
exit (1); // only reached if exec() failed

}



 Forking the current process and then executing a new process is the traditional approach
 But there are annoyances:
 It's two different calls
 The original process memory is copied over, even though you're just going to throw it out 

immediately with an exec()
 It's not always clear what happens to the threads associated with the original process

 To simplify matters, there are posix_spawn() and posix_spawnp() (the same, but 
with filename lookup in PATH) functions that execute a new process all in one go
 Of course, it has more complicated arguments to make up for being simpler

pid_t child = -1;
char *path = "ls";
char *argv[] = { "ls", "-l", NULL };
posix_spawnp (&child, path, NULL, NULL, argv, NULL);



 Once you've forked or spawned a process, it will be scheduled to 
run

 There are no guarantees about when a parent or a child will be 
scheduled relative to each other

 It can be useful for a parent process to wait until its child processes 
have terminated

 There are two functions for this:
 wait(int *stat_loc)
▪ Waits for all children

 waitpid(pid_t pid, int *stat_loc, int options)
▪ Waits only on child process with PID



 Here's the ls example from earlier, except that the parent process waits 
for ls to finish

 More code isn't shown, but the parent could continue doing other things
pid_t child_pid = fork ();
if (child_pid < 0)

exit (1); // exit if fork() failed

if (child_pid == 0) // child process
{

int rc = execlp ("ls", "ls", "-l", NULL);
exit (1); // only reached if exec() failed

}

wait (NULL); // waits for ls to finish



 Read in tokens
 The first token is the program you want to run
 Each token after a space is an argument
 When you reach a newline, that's the whole command

 To keep it simple, we'll support only commands with up to 10 
tokens, each of which is 10 or fewer characters long

 After reading in the tokens, we wait for the child process to 
finish

 Repeat until the user types in exit





 Although physical memory is shared between processes, the 
virtual memory system means that processes don't share 
memory directly

 Other things must be shared by processes:
 Network cards
 Hard drives and SSDs
 User input and output devices

 A uniform way to work with most shared resources is to treat 
them all like files

 This file abstraction makes many libraries similar and simpler



 The UNIX file abstraction uses two key ideas:
 A file is a sequence of bytes
 Everything is a file

 This abstraction is different from the traditional idea of files in a 
few ways:
 Moving backwards and forwards within a file isn't always possible
 Files don't always have names or live in a particular place
 Files don't always have a set structure

 Even so, creating, deleting, opening, closing, reading, and writing 
can be treated the same





 Finish files
 Events and signals



 Work on Assignment 2
 Due Friday by midnight

 Start working on Project 1
 Read sections 2.6 and 2.7


	COMP 3400
	Last time
	Questions?
	Assignment 2
	Project 1
	Process Life Cycle
	Creating processes in code
	Using fork()
	Fork bombing
	Running another program
	Example with exec()
	What if you don't want to fork() and exec()?
	Waiting for a child to finish
	Example with wait()
	Write a shell
	Files
	Sharing resources
	UNIX file abstraction
	Upcoming
	Next time…
	Reminders

