
Week 3 - Monday



 What did we talk about last time?
 Kernel
 System calls
 Process lifecycle











 Processes are, of course, created when you run a program from 
the command line

 However, you can also create processes from within a program, 
using calls to special functions

 The fork() function creates a new processes that's exactly the 
same as the current process

 The exec() function allows you to replace the current process 
with another program

 Each process has a unique ID, its process ID or PID
 getpid() returns the PID of the current process
 getppid() returns the PID of the current process's parent process



 The fork() function is pretty crazy!
 When you call it, the process you're inside of keeps running
 And another process spawns at exactly the same point in code
 Both processes have exactly the same memory layout
 The only difference is that fork() returns the child PID for the original process and 0 if 

you're the process that just got forked

pid_t child_pid = fork ();

if (child_pid < 0)
printf ("ERROR: No child process created\n");

else if (child_pid == 0)
printf ("Hi, I'm the child!\n");

else
printf ("Parent just gave birth to child %d\n", child_pid);



 If you call fork() in a loop, you will quickly create too many 
processes and slow/crash your computer

 Each fork() creates a new process, but the old process keeps 
running

 The following code will have four prints:

pid_t first_fork = fork ();

// Original parent and child create new processes
pid_t second_fork = fork ();

// This line prints four times
printf ("Hello from %d!\n", getpid ());



 Sometimes it's useful to fork a clone of yourself
 Other times, you want to run another program
 In those situations, you first fork yourself and then have your 

child call something from the exec() family of functions:
Function Description

execl(char *path, char *arg0, ..., NULL) Executes the program with the given path

execle(char *path, char *arg0, ..., NULL, char* envp[]) Executes the program with the given path and environment 
variables

execlp(char *file, char *arg0, ..., NULL) Executes the program by looking it up in the current PATH

execv(char *path, char *argv[]) Like execl() but command-line arguments are in an array

execve(char *path, char *argv[], char *envp[]) Like execle() but command-line arguments are in an array

execvp(char *file, char *argv[]) Like execlp() but command-line arguments are in an array

fexecve(int fd, char *argv[], char *envp[]) Executes the program stored in the file descriptor fd



 The following programs runs ls, listing the contents of the 
current directory:

pid_t child_pid = fork ();
if (child_pid < 0)
exit (1); // exit if fork() failed

if (child_pid == 0) // child process
{
int rc = execlp ("ls", "ls", "-l", NULL);
exit (1); // only reached if exec() failed

}



 Forking the current process and then executing a new process is the traditional approach
 But there are annoyances:
 It's two different calls
 The original process memory is copied over, even though you're just going to throw it out 

immediately with an exec()
 It's not always clear what happens to the threads associated with the original process

 To simplify matters, there are posix_spawn() and posix_spawnp() (the same, but 
with filename lookup in PATH) functions that execute a new process all in one go
 Of course, it has more complicated arguments to make up for being simpler

pid_t child = -1;
char *path = "ls";
char *argv[] = { "ls", "-l", NULL };
posix_spawnp (&child, path, NULL, NULL, argv, NULL);



 Once you've forked or spawned a process, it will be scheduled to 
run

 There are no guarantees about when a parent or a child will be 
scheduled relative to each other

 It can be useful for a parent process to wait until its child processes 
have terminated

 There are two functions for this:
 wait(int *stat_loc)
▪ Waits for all children

 waitpid(pid_t pid, int *stat_loc, int options)
▪ Waits only on child process with PID



 Here's the ls example from earlier, except that the parent process waits 
for ls to finish

 More code isn't shown, but the parent could continue doing other things
pid_t child_pid = fork ();
if (child_pid < 0)

exit (1); // exit if fork() failed

if (child_pid == 0) // child process
{

int rc = execlp ("ls", "ls", "-l", NULL);
exit (1); // only reached if exec() failed

}

wait (NULL); // waits for ls to finish



 Read in tokens
 The first token is the program you want to run
 Each token after a space is an argument
 When you reach a newline, that's the whole command

 To keep it simple, we'll support only commands with up to 10 
tokens, each of which is 10 or fewer characters long

 After reading in the tokens, we wait for the child process to 
finish

 Repeat until the user types in exit





 Although physical memory is shared between processes, the 
virtual memory system means that processes don't share 
memory directly

 Other things must be shared by processes:
 Network cards
 Hard drives and SSDs
 User input and output devices

 A uniform way to work with most shared resources is to treat 
them all like files

 This file abstraction makes many libraries similar and simpler



 The UNIX file abstraction uses two key ideas:
 A file is a sequence of bytes
 Everything is a file

 This abstraction is different from the traditional idea of files in a 
few ways:
 Moving backwards and forwards within a file isn't always possible
 Files don't always have names or live in a particular place
 Files don't always have a set structure

 Even so, creating, deleting, opening, closing, reading, and writing 
can be treated the same





 Finish files
 Events and signals



 Work on Assignment 2
 Due Friday by midnight

 Start working on Project 1
 Read sections 2.6 and 2.7


	COMP 3400
	Last time
	Questions?
	Assignment 2
	Project 1
	Process Life Cycle
	Creating processes in code
	Using fork()
	Fork bombing
	Running another program
	Example with exec()
	What if you don't want to fork() and exec()?
	Waiting for a child to finish
	Example with wait()
	Write a shell
	Files
	Sharing resources
	UNIX file abstraction
	Upcoming
	Next time…
	Reminders

